Handler 是什么(来自组员亮亮的分享)
Handler 的用途(主要的两个用途)
1、线程间的调度。主要有 sendEmptyMessage(int) , sendMessage(Message) , sendMessageAtTime(Message, long) , sendMessageDelayed(Message, long) 这些方法发送消息,并通过 Handler 中的 handlerMessage() 方法接受处理返回过来的消息。
2、延时处理消息或者执行某些操作。主要有 post(Runnable) , postAtTime(Runnable, long) , postDelayed(Runnable, long) 这些方法。
Handler 相关的类
Message:消息类,包含一个描述和任意数据对象,用于 Handler 发送和接受。虽然Message 的构造函数是 public,但是一般是使用 Message.obtain() 或者 Handler.obtainMessage() 来获取 Message 实例。
MessageQueue:消息集合,用于 Looper 分发的一个 low_level 类。
Looper:被用于消息循环线程的类。死循环从 MessageQueue 中取 Message。
ThreadLoacl:用于保存和提供线程级别的变量,主要是用来将 Looper 绑定到相关的线程上的。
Handler 工作流程
Handle 的初始化
一般情况下我们回去创建一个类继承 Hanlder 并实现其中的 handleMessage 来接收处理消息
class MyHandler extends Handler{ public MyHandler(Looper looper){ super(looper) } @Override public void handleMessage(Message msg) { //接受处理消息 } }
然后创建 MyHandler 的实例并通过其发送消息
MyHandler myHandler = new MyHandler(looper); ...... Message message = Message.obtain(); //初始化message ...... myHanlder.sendMessage(message);
在主线程中创建 Handler 实例可以直接通过 Handler hander = new Handler()
来实现,因为主线程中已经存在 Looper, Hanlder 内部可以通过 Looper.myLooper() 来拿到 Looper的实例。
Handler 的构造函数最终会分为两种:
1、有 Looper 参数的情况:
public Handler(Looper looper, Callback callback, boolean async) { mLooper = looper; mQueue = looper.mQueue; mCallback = callback; mAsynchronous = async; }
2、没有 Looper 参数的情况:
public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } //这里拿到的 mLooper 为 null 创建 Handler是会失败的 mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
通过 Handler 的构造器可以知道,Handler 中的 MessageQueue 的实例 mQueue 是通过 Looper 拿到的。还有一个 Looper.myLooper() 的方法,后面说。
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }
通过 Looper 的构造器可以知道 MessageQueue 的实例是由 Loop而创建。
消息的发送
从 Handler 的定义可以知道,Handle 可以发送 Message 和 Runnable 对象到消息队列。从 Handler 源码可以跟到发送 Message 会调用下面方法:
public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
然后调用了 enqueueMessage 方法:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { //这里把当前 Handler 实例赋给了 Message 的 target 变量,用于后期的消息分发 msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
这里回去调用 MessageQueue 的 enqueueMessage 方法:
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }
至此 由 Handler 发送的消息已经加到 MessageQueue 当中。那么由 Handler 发送 Runnable 对象是怎样的?Handler 中的 postDelayed 的的代码:
public final boolean postDelayed(Runnable r, long delayMillis){ return sendMessageDelayed(getPostMessage(r), delayMillis); }
由此可知采用的是和发送消息一样的流程。Handler 会通过 * getPostMessage* 方法提供一个 Message 对象:
private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); //这里把 Runnable 对象赋给了 Message 中的 callback 变量,后面的消息分发会用 m.callback = r; return m; }
消息的循环
消息分发是通过 Looper 实现的,所以先说下一下 Looper 这个类:
Looper的构造函数是私有的,所以我们只能通过 Looper.myLooper() 来获取当前线程的 Looper 实例:
public static @Nullable Looper myLooper() { return sThreadLocal.get(); }
方法中并没有去 new 一个 Looper 实例,而是通过 sThreadLocal 去 get。这里的 sThreadLocal 是 ThreadLocal 的一个实例。get 方法:
public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) return (T)e.value; } return setInitialValue(); }
这里会先去获取当前的线程,然后通过当前线程去拿 ThreadLocalMap 的实例(ThreadLocalMap 就是个 Map,通过Key-Value存取值)。这个map实例是在 Thread 中的,但在 Thread 中并没有初始化,初始化是在 ThreadLocal 中进行的。如果 map 为空,回去进行初始化的操作,在初始化过程中回去 new 一个 ThreadLocalMap 的实例赋给 Thread 中的 ThreadLocalMap 变量。 如果返回的值为 null 的话,说明 Looper 还没有初始化。 使用 Looper.prepare() 对 Looper进行初始化:
private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
初始化回去创建一个 Looper 对象并且 set 到 sThreadLocal 中去,这样 sThreadLocal 就会保留这个 Looper 对象。
关于 ThreadLocal ,主要是用来将 Looper 绑定到相关的线程上的。在 Android 系统中主线程是非安全线程,如果 Looper 没有绑定到主线程中(其他线程不能修改UI)是会抛出异常的。
消息分发是通过 Looper 的 loop 方法进行的,可以通过 Looper.loop() 开始循环:
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } try { msg.target.dispatchMessage(msg); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
通过 MessageQueue 的 next() 或获取 Message:
Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (false) Log.v("MessageQueue", "Returning message: " + msg); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf("MessageQueue", "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
在这个方法中也是采用死循环去取队列中的消息的,这里使用的是 Native 方法获取消息,涉及到的是 Linux 的的一些阻塞机制(不懂)
获取到的 Message 对象通过 Message 的 target 来分发消息,这里的 target 就是发送该 Message 实例的 Handler。最终通过 Handler 中的 dispatchMessage 方法来分发消息:
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
前文说过,Handler 如果发送的是 Runnable 对象,会存到 msg.callback 中,如果 Runnable 不为空,就是执行 handleCallback :
private static void handleCallback(Message message) { message.callback.run(); }
即执行 Runnable 中的 run 方法。
如果发送的是 Message 对象,那么最终执行的就是 handleMessage ,该方法接受到Message 对象并进行处理。至此,消息从发送到接受处理就完成。
注:本文内容来自互联网,旨在为开发者提供分享、交流的平台。如有涉及文章版权等事宜,请你联系站长进行处理。