AI应用开发实战 - 从零开始搭建macOS开发环境
AI应用开发实战 - 从零开始搭建macOS开发环境
本视频配套的视频教程请访问:https://www.bilibili.com/video/av24368929/
建议和反馈,请发送到
https://github.com/Microsoft/vs-tools-for-ai/issues
联系我们
OpenmindChina@microsoft.com
零、前提条件
- 一台能联网的电脑,使用macOS操作系统
- 请确保鼠标、键盘、显示器都是好的
一、工具介绍
Viusal Studio code
Visual Studio Code 是微软继Visual Studio 宇宙第一IDE后出品的又一利器,是一款完全免费的文本编辑器。
Visual Studio Code 支持Windows、Linux和Mac三大操作系统,有着一流的响应速度,不论是本身的启动,还是加载目录、打开浏览大文件的速度,都十分迅速;这款文本编辑器的可扩展能力也十分强大,在其活跃生态的支持下,提供了大量的插件供开发者自行配置,比如对各种小众语言的支持、数据访问、键盘布局等等;另外,它在配置上非常灵活,但大多是基于json的文本配置,使用起来不向图形界面那样简单易懂,但是熟悉后还是很方便的。
Tools for AI
Visual Studio Code 上的Tools for AI 是微软官方出品的一站式机器学习集成开发环境,其与VS code相结合,能让开发人员在同一个开发环境里,完成从编辑、训练、集成模型,到服务与应用的代码开发。
Tools for AI 对训练任务的调度和管理做了很好的集成。现在、后端的计算平台支持本机、Linux服务器、微软的企业级计算资源管理平台、Azure的机器学习平台、Batch AI等。
另外还能够管理各种远程的存储,直接在界面中上传数据、下载模型日志等文件。
二、搭建开发环境
Visual Studio Code 安装
访问 https://code.visualstudio.com
点击Download自动下载对应操作系统的Visual Studio Code

插件安装
首先打开VS Code,点击扩展图标

首先安装好Python插件

有插件自动更新或安装后,就会提示重新加载,点击重新加载后,VS Code就会重新启动,并且加载相应的插件。
然后搜索Tools for AI,选择第一个安装。

这里同样也要点击重新加载。
同样,我们可以把中文包也安装上,这样就能显示中文了。
安装Git
访问 https://git-scm.com/downloads
下载Mac适用的版本
下载机器学习示例库
打开终端,找到一个自己想用来存放这些文件的文件夹,在终端中输入
git clone https://github.com/Microsoft/samples-for-ai/
这时Git开始自动克隆示例库

安装python
这一步大家安装python3.5或3.6皆可,但更推荐大家安装python3.6,同时请一定选择64位的版本,否则很多机器学习框架都无法使用。
访问 https://www.python.org/downloads/ 选择适用于macOS的64位安装包
note:在python安装完成后,请在Application中找到python的安装文件,运行Certificates install.commands,安装常见的根证书,否则python脚本访问任何https网站时都会出现证书错误,这也会影响我们接下来的安装过程

安装机器学习和机器学习的软件及依赖
还是上一步的文件夹,进入installer目录,输入
python ./install.py

等待它安装完成。
至此,环境搭建已经全部结束。
三、运行示例代码
从这一步开始,我们要开始真正进行训练了,如果你是第一次接触机器学习,那么你就可以训练出自己的第一个模型了!
首先打开Visual Studio Code,选择文件->打开
打开samples
的总目录。

我们使用tensorflow和MNIST来作为例子。

MNIST是一个流行的示例数据集,是人手写的数字的图片集。我们可以用它来训练一个模型,让计算机识别出人手写的数字是什么。
note:如果你的电脑安装了多个版本的python,请点击VS Code窗口下方的
Python环境
,程序将列出本机找到的所有python环境,我们要将其切换到正确的环境上


本地调试及训练
首先,点击AI Explorer
来新建或者修改本地环境配置。在Local - Environment
下右键,点击Add Configuration

设置好name,并将上一步选择的python环境的路径填写进去

点击右下角的Finish来刷新环境配置
note:一定要点击Finish才能正确地刷新配置

在配置好本地环境后,还需要添加一个运行作业的配置,这里选择查看->命令面板
,输入AI: Edit Job Properties
,然后回车。

note:如果你的电脑安装了多个版本的python,请修改
startupCommand
中的Python
改为Python3
,然后点击Finish
,这样可以确保在执行作业的时候使用python3运行程序

右键convolutional.py
,选择AI: Submit Job

选择Local

选择刚才配置好的运行环境

可以看到屏幕下方有一个新的终端窗口,这时程序就已经开始对模型进行训练了

远程训练
由于Mac没有配置Nvidia的显卡,因此只能使用CPU训练模型,如果本机的性能不行,有的时候可能需要花费很长时间,这个时候,如果远程的服务器,特别是有专门的计算资源加持的话,速度会快很多。另外,很多机器学习的框架支持并行计算,远程训练时还可以接入并行的资源,进一步提高训练效率。
Tools for AI支持多种远程训练的平台,包括Remote Machine、私有部署的PAI,以及Azure的Batch AI等,本系列博客以后会详细介绍如何使用这些资源。本篇博客主教讲解如何在远程Linux上进行训练。
首先在AI Explorer
中,在Remote Linux
上点击鼠标右键,点击Add Configuration
,然后填入自己服务器的信息,最后点击Finish
完成设置


然后,同样像上次一样选择AI: Submit Job
,只是这次要选择刚才配置好的Remote Linux
在提交完作业后,如果想要查看运行情况,则需要在Remote Linux
中选择之前配置好的机器,点击鼠标右键,选择List Jobs
,这时可以看到这台机器上提交过的任务列表


点击我们刚刚提交的那个,就可以列出这个任务的所有细节

同时可以通过点击页面上的Open Storage Explorer
来查看该任务在远程机器下的目录。

如果需要查看远程机器的其他目录,则在机器上右键,选择Open Storage Explorer
,选择Custom Directory
,然后输入你要访问的目录即可

至此,远程模型训练的部分就完场了。
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 大模型 Token 究竟是啥:图解大模型Token
· 35岁程序员的中年求职记:四次碰壁后的深度反思
· 继承的思维:从思维模式到架构设计的深度解析
· 如何在 .NET 中 使用 ANTLR4
· 后端思维之高并发处理方案
· 感觉程序员要被 AI 淘汰了?学什么才有机会?
· MQTT协议发布和订阅的实现,一步步带你实现发布订阅服务。
· Dify开发必备:分享8个官方文档不曾解释的关键技巧
· 活动中台系统慢 SQL 治理实践
· “你觉得客户需要”是杀死TA的最后一根稻草 | IPD集成产品开发
2016-06-08 剁手党也有春天 -- 淘宝 UWP ”比较“功能诞生记